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Abstract—Dementia is one of the most common diseases in the
elderly and a leading cause of mortality and disability. In recent
years, a research effort has been made to develop computer aided
diagnosis tools based on machine (deep) learning models fed with
neuroimaging data. However, while much work has been done
on MRI imaging, very little attention has been paid on amyloid
PETs, which have been recently recognized to be a promising
and powerful biomarker of neurodegeneration. In this paper, we
contribute to this less explored research area by proposing a
3D Convolutional Neural Network aimed at detecting dementia
based on amyloid PET scans. An experiment performed on the
recently released OASIS-3 dataset, which provides the community
with a new benchmark to advance this line of research further,
yielded very promising results and provided new evidence on the
effectiveness of amyloid PET.

Index Terms—dementia, Alzheimer’s, amyloid PET, computer
aided diagnosis, deep learning, convolutional neural networks

I. INTRODUCTION

Dementia is one of the most common diseases in the
elderly and a leading cause of mortality and disability [1]:
neurodegenerative disorders affect about 15% of the entire
world population and, in the US alone, more than 5 million of
individuals are suffering from some kind of cognitive disorder,
of which about 60% are results of Alzheimer’s disease (AD)
[2]. Dementia, in fact, is not a syndrome but rather a symptom
of an underlying disease that depends on the patient’s age [3].
For example, in younger patients, Huntington’s disease and
genetic forms of AD tend to occur more often; while, in older
patients, cognitive problems are often due to AD, Lewy body
dementia, and vascular diseases [3], [4].
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Fig. 1: Neuroimaging obtained with structural MRI or PET
using different radiotracers both in healthy subjects and in
subjects with AD (adapted from [7]).

An accurate and early diagnosis of dementia makes it
possible to implement an intervention to slow down the
progression of the disease. Unfortunately, the time between
the onset of symptoms and diagnosis is often long [5], due to
the insidious onset of the disease and the lack of recognition by
families or the uncertainty of the diagnostic path [6]. Various
attempts have been made in the medical field to diagnose
neurodegenerative diseases, and more specifically dementia,
as early as possible, and Artificial Intelligence aims to help
clinicians recognize underlying diseases that impair patients’
cognitive abilities.

Among the attempts to diagnose dementia in the pre-clinical
stage, several works, e.g. [8]–[13], have proposed diagnostic
models based on the analysis of MRI scans of the brain.
Although the use of MRI scans is effective in finding scar
tissue, necrosis, and/or atrophy in the brain, recent research has
shown a high correlation between the amount of amyloid in
the cerebral cortex and AD [7]. For this purpose, amyloid PET
imaging represents a powerful biomarker for the assessment
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of people with cognitive impairment [14]. The scan displays
plaques in the brain, which are the main suspects of damaging
and killing nerve cells in AD. Before amyloid PET, these
plaques could only be detected by examining the brain during
an autopsy.

In the medical field, PET scans are classified using the
contrast material. The three PET scans widely used in the
diagnosis and recognition of AD are PiB-PET, AV45-PET,
and FDG-PET [14]. The main difference between each of the
three types of PET scans lies in the substance used as the
contrast material: PiB-PET scans use the Pittsburgh compound
B (PiB), which binds to amyloid and tends to concentrate
near the cerebral cortex of people with AD [15]; AV45-PET
scans use florbetapir (AV45) which, like PIB, binds to amyloid
[16]; finally, FDG-PET scans use fluorodeoxyglucose which,
unlike the previous compounds, is used to evaluate glucose
metabolism [17]. We can therefore group the available types
of PET scans into two categories: amyloid PETs can be used to
detect the concentration of amyloid in the brain; glucose PETs
can be used to analyze glucose metabolism. Both types can
be used as evidence in the diagnosis of AD [14] (as shown
in Figure 1), but amyloid PETs are slightly more sensitive
when used to diagnose AD, especially in patients with known
histopathology [18]. Thus, we focus on amyloid PETs.

To the best of our knowledge, very few attempts have been
made to create an automatic diagnostic tool for dementia
and, more specifically, for AD using amyloid concentration
(e.g., [19]). Even fewer works are based on the analysis of
PET images, both for the evaluation of glucose metabolism
and for the amount of amyloid. This paper aims to contribute
to this research direction by proposing a model, based on a
3D Convolutional Neural Network (CNN), which allows the
detection of dementia by amyloid PET scans. The method was
tested on the recently proposed OASIS-3 dataset [20], which
provided the community with a new benchmark for further
advancing neurodegenerative disease research.

The rest of this paper is organized as follows. Section II
discusses related works. Section III presents the dataset used
to train and test the model built using the method discussed in
Section IV. Section V details the experimental session and
its results. Section VI provides conclusions and highlights
possible improvements for future work.

II. RELATED WORK

Although dementia is one of the most common neurode-
genarative diseases, a preemptive diagnosis is still difficult.
Indeed, dementia is considered highly under-diagnosed world-
wide, and a correct diagnosis, if ever made, is usually in the
advanced stage of the disease [21]. To help doctors in this
difficult task, Artificial Intelligence can play an important role.
Computational and AI-based solutions, in fact, have been used
with promising results to support the analysis of similar or
related disorders, e.g. [22]–[25].

Various attempts have been made to develop intelligent
models that automatically analyze neuroimaging data, such as
MRI and PET, to support the diagnosis of dementia. Structural

MRI remains the standard neuroimaging technique and is
used as a means to differentiate between AD and other types
of dementia, as it helps estimate tissue damage or loss in
vulnerable brain regions [26]. More precisely, MRI scans allow
the quantification of the amount of atrophy in the brain, which
is a valid marker and an inevitable step in neurodegenerative
diseases. To this end, the work recently presented by Altay
et al. [8] involves the use of neural networks to predict the
incidence of AD using MRI scans. It is based on the same
OASIS-3 dataset that we used in our study. As MRI images
are 3D scans (created by taking multiple shots, or “slices”,
moving the scanner along an axis for a very short distance),
one problem lies in processing the third dimension. A first
approach consists in treating the volumes as a stream of 2D
images, as happens in one of the models presented in [8].
Another approach is to modify the neural network to accept a
3D volume as its input, as suggested in [27]. Similar reasoning
can also be applied to PET scans, as we did for our model.

While structural MRI is undoubtedly powerful, recent lit-
erature is also investigating on the contribution of amyloid
PET to aid in the diagnosis of dementia. It can provide a
complementary contribution, as it can allow the model to
observe different features of the brain. In fact, it is now
widely known that AD is closely related to the presence of
β-amyloid (a peptide whose function is still unknown [28]) in
the cerebral cortex [7]. Using PET scans, we can detect and
quantify the concentration of this peptide (as well as many
other substances) using a contrast material.

Most of the research work that aims to automatically
recognize AD using PET scans uses FDG-PET scans. For
example, the work presented by Ding et al. [29] uses a CNN
trained on the ADNI dataset to diagnose Alzheimer’s before
the onset of symptoms. Few works attempt to use amyloid
PET scans to achieve similar goals, although such scans
are more sensitive in some cases (for example, if patients
have known histopathology) [18]. A slightly larger number
of researchers attempted to create a model that performs the
diagnosis through both FDG and amyloid PETs, e.g. [19].
A limitation of this approach lies in the nature of the PET
scans themselves: by grouping both FDG and amyloid scans
as inputs for a single model, we can introduce biases due to
the different underlying subject (glucose metabolism for FDG
scans, β-amyloid for the others). A better approach may be
to train different models: one for each type of PET scan. As
this is a less explored area of research, this paper focuses on
using amyloid PET scans as an input to a 3D convolutional
neural network.

III. MATERIALS

For the purposes of this study, we considered the OASIS-
3 dataset [20], that is the latest version of the OASIS dataset
already used by various authors for several research objectives
[30]–[34]. It is a collection of MRI and PET images for 1098
participants, including 605 cognitively normal adults and 493
individuals in various stages of cognitive decline, aged 42 to
95. In this paper we focus on PET images. In particular, the
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Fig. 2: An example of the distribution of the labels before and
after the post-processing step aimed at removing false positives
and false negatives. In particular, the data of the subject
“OAS30040” have been considered here. The horizontal axis
indicates the days since entry.

dataset consists of 1607 PET sessions, which can be used to
diagnose AD. Among these sessions, we considered the 1352
PET sessions, available as part of the dataset, which have
already been post-processed using the PET Unified Pipeline -
PUP. The OASIS-3 dataset provides the three different types of
PET scans described in Section I, with different availability for
each session, namely PiB-PET, AV45-PET, and FDG-PET. For
the purpose of our work, we used only the amyloid PET scans
(i.e., PiB-PET and AV45-PET), which comprise approximately
93% of the PET scan subset of the entire dataset. From an
initial analysis of the available processed PET scans, multiple
images are provided for each scanning session (such as the
PET itself and an associated T1-weighted MRI): only PET
scans were considered; more precisely, only those normalized
with motion correction.

Given the complexity of the dataset, which includes diverse
data and metadata associated with patients who have under-
gone more than one medical evaluation, pre-processing was
required to make the data more suitable for neural network
learning. First of all, since the OASIS-3 dataset does not
provide directly pre-labeled images, a labeling step was re-
quired to provide the ground truth of the diagnostic model. The
OASIS-3 dataset provides a list of psychiatric and neurological
assessments for each patient, along with an evaluation of the
cognitive state, using the Clinical Dementia Rating scale [35],
and a possible diagnosis. Each entry is labeled by up to five
different differential diagnoses expressed in natural language.
First, all labels were mapped to a value of 0 (representing
cases of “healthy” or “non-dementia diagnosis”) or a value of
1 (representing the “AD or similar dementia diagnosis” cases),
thus transforming the problem into a binary classification.
Then, after this first step, all five differential diagnoses were

merged into a single label, so that the final value is 1 if and
only if at least one differential diagnosis falls into the “AD
or similar dementia diagnosis” class. To further improve this
step, each label was post-processed to remove as many false
negatives and false positives as possible from the dataset. If the
label was negative and at least one of the two predecessors was
positive and at least one of the two successors was positive,
then the label became positive; otherwise, if the label was
positive and the immediate predecessor was not positive and
the two successors were both negative, then the label became
negative. The plot in Figure 2 represents the result of this post-
processing phase. Finally, each PET scan image was assigned
a label based on the latest diagnosis. Since not all scan sessions
are associated with a psychiatric or neurological test, each scan
was associated with the closest test in time (either way: before
or after the scan).

After the first pre-processing step, a labeled dataset of PET
scans was obtained. It consists of 1217 negative samples and
only 135 positive samples. It is clear that, since ∼ 90% of
the samples are negative, this is a highly imbalanced dataset.
To address this issue, we opted for a combination of random
under-sampling of the negative class and the application of
data augmentation techniques to the positive class. To perform
the random under-sampling of the negative class, we first
selected all negative scans of the same subjects that have
positive scans: this would allow comparison between two
images without any severe morphological difference in the
brains represented. This selection yielded a total of 23 images.
Then, we randomly selected a total of 182 scans from the
remaining negative scans, reaching a total of 205 negative
samples. Finally, we augmented the positive samples by about
50% (thus obtaining a total of 205 images) through random
rotation and mirroring of some images (as recently performed
by [8] on the same dataset).

IV. METHODS

Most of the work in the literature that uses neural net-
works to detect dementia in neuroimaging data makes use
of traditional feed-forward neural networks fed with flattened
feature vectors, e.g. [36], or 2D convolutional neural networks
that accept only single slices as inputs, e.g. [10], [29]. These
approaches lead to ignoring the information that 3D volumes
intrinsically carry on. To overcome this issue, in this study we
propose to use a 3D convolutional neural network (3D CNN)
taking the 3D volume as input.

Figure 3 shows the architecture of the proposed model. It is
a 17-layer 3D CNN comprising four 3D convolutional layers
with two layers consisting of 64 filters followed by 128 and
256 filters, all with a kernel size of 3×3×3, as done in [37].
Each convolutional layer is followed by a max pooling layer
with a stride of 2, again followed by a batch normalization
layer. The sequence of the four groups of layers defines the
feature extraction block of the model, which is followed by
a dense layer of 512 neurons, which receives the flattened
output of the feature extraction block, followed by a dropout
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Fig. 3: The 3D CNN model. Subscripts indicate hyperparameters (# filters, stride and kernel size in the case of conv layers).

(a) Original scan (b) Thresholded (c) Bounding box (d) Final scan

Fig. 4: An example of the scaling and cropping process using
the Otsu threshold.

layer (with a 30% dropout rate) and a sigmoid output neuron
performing the binary classification.

Before training the model, another pre-processing step was
required to resize the images. PET scans are 3D images (i.e.,
sequences of images depicting a different slice of the brain
along an axis) taken during a predefined time interval. For
this reason, the first step was to decide how to treat the time
coordinate in the images. We chose to reduce the series of
images over time to a single average image, thus allowing us to
treat PET images as a typical MRI or CT image. Each averaged
PET scan, therefore, required to be resized to a common size.
To avoid introducing up-scaling artifacts, the image slices were
resized to 128×128 voxels, the minimum size available in the
dataset. A similar criterion was applied to the choice of the
number of slices to keep for each image: to account for the
diversity of the scan settings and, therefore, the diversity in the
availability of the slices, we chose to keep the 50 middle slices
as it is certain that they depict the subject’s brain (similar to
the choice of middle slices in [8]). Before scaling, the images
were processed to identify a bounding box around the brain,
in order to center it: first, a heavily blurred version (using a
Gaussian blur with kernel size 13 × 13 and σ = 150) of the
images were segmented using the simple, but effective Otsu
thresholding [38]; then, a simple bounding box was selected
by detecting the “high” values in the images (Fig. 4).

V. EXPERIMENTAL RESULTS

The experiment was performed on Google Colaboratory
Pro, using the GPU NVIDIA Tesla P100. The model architec-
ture was implemented using the popular TensorFlow library.

To evaluate the proposed method, a stratified 10-fold cross-
validation was used. In other words, each fold contained
roughly the same proportions as the two types of class labels.
For the training phase, we used binary cross-entropy as a loss
function, defined as follows:

H(y, p) = − (y log(p) + (1− y) log(1− p)) ,

where y is the ground truth label, while p is the model output
for an individual observation. Cross-entropy was minimized
using the Adam optimizer with a dynamic learning rate, with
an exponential decay (rate 0.96) and a starting value of 5 ×
10−5. The maximum number of epochs was 104, with an early
stopping criterion.

As performance metrics, we computed the following classic
metrics commonly used in the diagnostic field:

• Accuracy: that is simply the proportion of correctly
predicted samples (both true positives and true negatives)
in the selected population;

• Sensitivity: which refers to the proportion of diseased
subjects who have been classified as having the condition;

• Specificity: that is the proportion of healthy samples who
have been classified as not affected by the disease;

• AUC (Area Under the ROC Curve): which is used as
a summary of the ROC curve; the higher the AUC, the
better the model performance in distinguishing between
the positive and negative class.

Figure 5 shows the results of the stratified 10-fold cross-
validation. It can be seen that the model achieved a relatively
high and stable average accuracy of 83%, indicating the
effectiveness of the proposed approach as a decision support
tool. As for the other performance metrics, the model also
showed a sensitivity and specificity of 86% and an AUC
of 87%. This indicates that the model did not favor the
classification of one class over the other and this may be due
to the attention paid to balancing the dataset.

The results obtained are in line with several recently pub-
lished results achieved on OASIS as well as ADNI with deep
learning [39]. A schematic comparison with some of the more
recent works is provided in Table I. Even though our results
are not outstanding, they are quite promising considering that
the task is very challenging and the community is still working
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Fig. 5: Cross-validation results. The graph on the left rep-
resents the average accuracy and loss and their standard
deviation; the graph on the right represents a box plot of all
the losses and accuracies reached during the cross-validation.

to achieve generalizable results that drive this technology to
finally reach technology transfer.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated whether amyloid PET scans
could be a valuable diagnostic input to aid in the recognition
and diagnosis of AD and similar dementias using a deep
learning model. Promising results were obtained specifically
with a 3D convolutional neural network trained and evaluated
on the recently released OASIS-3 dataset, providing new
evidence that amyloid PET can be considered a potential
biomarker of neurodegeneration.

The work presented in this paper has a major limitation,
relating to the way the fourth, time dimension of PET scans
has been treated: the current pipeline computes the average
value over time for each voxel, thus creating an “averaged”
volume that is fed as input to the neural model. Although this
approach has produced promising results, in order to not incur
a loss of information it may be better to treat each individual
scan as a time series of images. Furthermore, the proposed
method could be extended in a multi-modal way, using not
only amyloid PET scans, but also glucose PET scans or MRI
scans. Such an extension would allow for the creation of
a comprehensive diagnostic tool that may be able to detect
dementia more effectively.

ACKNOWLEDGMENTS

Data were provided by OASIS-3. Principal Investigators:
T. Benzinger, D. Marcus, J. Morris; NIH P50 AG00561,
P30 NS09857781, P01 AG026276, P01 AG003991, R01
AG043434, UL1 TR000448, R01 EB009352. AV-45 doses
were provided by Avid Radiopharmaceuticals, a wholly owned
subsidiary of Eli Lilly.

REFERENCES

[1] C. Berr, J. Wancata, and K. Ritchie, “Prevalence of dementia in the
elderly in Europe,” European Neuropsychopharmacology, vol. 15, no. 4,
pp. 463–471, aug 2005.

[2] K. Maiese, “Cognitive impairment and dementia: Gaining insight
through circadian clock gene pathways,” Biomolecules, vol. 11, no. 7,
p. 1002, jul 2021.

[3] F. Barkhof and M. A. van Buchem, “Neuroimaging in Dementia,”
in Diseases of the Brain, Head and Neck, Spine 2016-2019,
J. Hodler, R. A. Kubik-Huch, and G. K. von Schulthess, Eds. Cham:
Springer International Publishing, 2016, pp. 79–85. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-30081-8 10

[4] D. S. Knopman, R. C. Petersen, R. H. Cha, S. D. Edland, and W. A.
Rocca, “Incidence and causes of nondegenerative nonvascular dementia,”
Archives of Neurology, vol. 63, no. 2, p. 218, feb 2006.

[5] A. Fiske, M. Gatz, B. Aadnøy, and N. L. Pedersen, “Assessing age of
dementia onset,” Alzheimer Disease & Associated Disorders, vol. 19,
no. 3, pp. 128–134, jul 2005.

[6] C. M. Speechly, C. Bridges-Webb, and E. Passmore, “The pathway to
dementia diagnosis,” Medical Journal of Australia, vol. 189, no. 9, pp.
487–489, nov 2008.

[7] G. Chételat, J. Arbizu, H. Barthel, V. Garibotto, I. Law, S. Morbelli,
E. van de Giessen, F. Agosta, F. Barkhof, D. J. Brooks, M. C. Carrillo,
B. Dubois, A. M. Fjell, G. B. Frisoni, O. Hansson, K. Herholz, B. F.
Hutton, C. R. Jack, A. A. Lammertsma, S. M. Landau, S. Minoshima,
F. Nobili, A. Nordberg, R. Ossenkoppele, W. J. G. Oyen, D. Perani,
G. D. Rabinovici, P. Scheltens, V. L. Villemagne, H. Zetterberg, and
A. Drzezga, “Amyloid-PET and 18f-FDG-PET in the diagnostic in-
vestigation of Alzheimer’s disease and other dementias,” The Lancet
Neurology, vol. 19, no. 11, pp. 951–962, nov 2020.

[8] F. Altay, G. R. Sanchez, Y. James, S. V. Faraone, S. Velipasalar,
and A. Salekin, “Preclinical stage Alzheimer’s disease detection using
magnetic resonance image scans,” Nov. 2020.

[9] H. Allioui, M. Sadgal, and A. Elfazziki, “Deep MRI segmentation: A
convolutional method applied to alzheimer disease detection,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 10,
no. 11, 2019.

[10] D. Jha and G.-R. Kwon, “Alzheimer disease detection in MRI using
curvelet transform with k-NN,” Journal of Korean Institute of Informa-
tion Technology, vol. 14, no. 8, p. 121, aug 2016.

[11] A. El-Zaart and A. A.Ghosn, “MRI images thresholding for alzheimer
detection,” in Computer Science & Information Technology ( CS & IT
). Academy & Industry Research Collaboration Center (AIRCC), may
2013.

[12] H. Fuse, K. Oishi, N. Maikusa, T. Fukami, and J. A. D. N. Initiative,
“Detection of alzheimer’s disease with shape analysis of MRI images,”
in 2018 Joint 10th International Conference on Soft Computing and In-
telligent Systems (SCIS) and 19th International Symposium on Advanced
Intelligent Systems (ISIS). IEEE, dec 2018.

[13] O. Ben Ahmed, J. Benois-Pineau, C. B. Amar, M. Allard, and G. Cathe-
line, “Early alzheimer disease detection with bag-of-visual-words and
hybrid fusion on structural MRI,” in 2013 11th International Workshop
on Content-Based Multimedia Indexing (CBMI). IEEE, jun 2013.

[14] L. Rice and S. Bisdas, “The diagnostic value of FDG and amyloid
PET in alzheimer’s disease—a systematic review,” European Journal
of Radiology, vol. 94, pp. 16–24, sep 2017.

[15] W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist, D. P.
Holt, M. Bergström, I. Savitcheva, G.-F. Huang, S. Estrada, B. Ausén,
M. L. Debnath, J. Barletta, J. C. Price, J. Sandell, B. J. Lopresti, A. Wall,
P. Koivisto, G. Antoni, C. A. Mathis, and B. Långström, “Imaging brain
amyloid in Alzheimer’s disease with Pittsburgh Compound-B,” Annals
of Neurology, vol. 55, no. 3, pp. 306–319, jan 2004.
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