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Abstract This chapter presents an overview of ten selected Artificial Intelligence (AI)-driven web 

platforms designed to support the early stages of the drug discovery process. Its primary aim is to serve 

as both a practical guide and a critical review for potential users of such platforms, including those 

without cheminformatics or programming expertise. Additionally, we underline the limitations of these 

platforms and explore potential enhancements through Human-Centered Design (HCD) strategies to 

help improve both existing and future web-based platforms for optimal use. 

Keywords Web-platforms, Bioactivity/toxicology Prediction, Generative models, Usability, Human-

centered design.  

 

Artificial Intelligence (AI)-driven methods and tools are playing an increasingly crucial role in 

accelerating the early phases of the Drug Discovery process, thanks to the growing availability of freely 

accessible repositories containing bioactivity and toxicity data. The integration of AI has created new 

and alternative pathways that promise to reduce both time and resources required for developing novel 

therapeutics. A key advantage of machine-driven hypothesis generation is its ability to design new 

compounds based on multiple pharmacokinetic (Absorption, Distribution, Metabolism, Excretion, and 

Toxicity; ADMET) and pharmacodynamic (selectivity, bioactivity) criteria simultaneously, including 

potential off-target and side effects (Schneider, 2018). These approaches enable a more comprehensive 

evaluation of compounds during the early stages of drug development, even before chemical synthesis 

occurs. 

To ensure broad applicability of AI-based models within the scientific community, it is 

increasingly common for them to be made directly accessible to the public through intuitive and user-

friendly web platforms. While current platforms are designed for users with varying levels of expertise 

in the field, to ensure intuitive and accessible interaction, they are predominantly developed by 

researchers with a medicinal chemistry background, particularly in cheminformatics. True 

advancements of these web-based platforms in this field necessitate the collaboration between 

medicinal chemistry and computer science, specifically through the integration of the Human-Computer 

Interaction (HCI) principles. To create systems that place users at the core of the process, Human-

Centered Design (HCD) should be integrated to create solutions that effectively address users’ needs, 

preferences, and behaviors while ensuring a positive experience. Regrettably, HCD concepts continue 

to be largely undervalued by researchers creating web platforms for drug discovery. 
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The aim of this chapter is to take a first step in bridging this gap by offering an in-depth analysis 

of AI-based platforms designed to assist experts in the early phases of drug discovery, while also 

emphasizing the significance of HCI basis. A selection of web-based platforms will be presented 

providing a practical and useful guide for potential users, including those without cheminformatics or 

programming skills. At the same time, AI platforms’ limitations will be displayed, along with 

suggestions for improvements, particularly in terms of usability (cf. Designing Usable AI-Based 

Strategies).  Finally, we will consider a practical example; a critical review of a platform, based on HCI 

methods will be provided, demonstrating how usability can be enhanced to facilitate and make the 

interaction process more effective. 

1.1 AI-Based Platforms for Drug Discovery: selected examples 

In this section, we will present ten cheminformatics platforms available on the web and realized 

to support researchers involved in the early phases of the drug discovery process. The input required by 

these tools is generally represented by a two-dimensional (2D) structure or a Simplified Molecular Input 

Line Entry System (SMILES; Weininger, 1988) representation of one or more molecules, provided by 

the user.  

Considering their aim and the nature of the tasks they address, these platforms can be classified 

as either predictive or generative. The former are designed to predict chemical-physical, 

pharmacological, or toxicological properties of molecules based on Quantitative Structure-Activity 

Relationship (QSAR) models trained for prediction. Notably, when query compounds significantly 

differ from the chemicals used to train a QSAR model, the reliability of predictions is compromised. 

To ensure confidence in predictions, an Applicability Domain (AD) is often defined. The AD outlines 

the chemical space covered by the model, specifying the range within which predictions can be 

considered reliable (Gadaleta et al., 2016). On the other hand, generative platforms go beyond 

prediction, using more advanced Machine Learning (ML) methods, called Deep Learning (DL), with 

algorithms such as Recurrent Neural Networks (RNN), to automatically design new molecules with 

specific desired characteristics (Gupta et al., 2018). They could be used to i) generate novel, potentially 

bioactive compounds, ii) generate molecules that explore a new chemical space, and iii) optimize 

existing molecules to improve their physicochemical properties (Lamanna et al., 2023).  Notably, some 

cheminformatics platforms integrate both predictive and generative functionalities, enabling 

simultaneous molecular property estimation and de novo molecule design. 

Based on a predefined set of key features, we analyze a selection of platforms that were 

conceived for virtual screening, binding affinity prediction, ADMET profiling, and automatic design of 

novel drug-like compounds. More specifically, for each platform we examine, a technical sheet 

specifying certain characteristics will be provided. Firstly, the platform name will be presented 

including the specific version (when available), followed by general information such as the year of 

development and the research group behind its creation. The field Category will specify whether the 

platform is predictive or generative, detailing the type of prediction it performs. This may include tasks 

such as the prediction of toxicological or pharmacological activity, affinity, selectivity, ADMET 

properties, target fishing, bioactivity profiling, or de novo design. The Endpoint section will offer a 

detailed explanation of the platform’s final aim, clarifying its intended application. Meanwhile, 

Background and Significance will feature the specific objectives and relevance of the platform for the 

scientific community, providing insights into its importance, particularly concerning specific protein 

targets. The technical aspects will be covered in Technical information, where the computational 

methods and models employed by the platform will be described. Additionally, if the AD is considered 

within the platform, it will be explicitly stated. Furthermore, Access will specify whether the platform 

is publicly available, whether registration is required, and will include a link to the webpage. The nature 
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of the data input will be detailed in the Input section, explaining both the type and modality of the 

required information. Similarly, the Output section will outline the type and format of the results 

provided, accompanied by a visual representation (Figure). Information about updates and engagement 

with the scientific community will be covered in Community and updates, where the year and 

publication of any available updates will be recorded. For user assistance, the Technical support section 

will list available resources such as contact forms, or direct contact addresses. Finally, Further 

information will include supplementary details that may be useful for users, such as guidelines, 

instructions, and estimated processing time, whenever these details are provided. 

 

1.1.1                  PRED-hERG (5.0) 

Developed in 2014 (Braga et al., 2014, 2015) by the Laboratory for Molecular Modeling and Drug 

Design (LabMol, http://insightai.labmol.com.br/), which was established at the Faculty of Pharmacy of 

the Federal University of Goiás in Brasil. 

Category: Predictive – classification and regression prediction of toxicological activity. 

Endpoint: The platform performs binary and multiclass classification of chemicals that may induce 

cardiotoxicity by blocking the human Ether-à-go-go Related Gene (hERG) channel (Taglialatela et al., 

1998). The compounds are categorized as strong blockers, moderate/weak blockers, and non-blockers. 

Through a regression model, it also provides a prediction of the pIC50 resulting from the hERG-related 

block. 

Background and Significance: hERG is a transmembrane potassium channel involved in the regulation 

of cardiac action potential. Binding of structurally diverse drugs can cause hERG blockage induced 

cardiotoxicity associated with ventricular arrhythmia and, in extreme cases, sudden death (Taglialatela 

et al., 1998; Cavalluzzi et al., 2020).  

Technical information: The tool includes two classification models, namely binary and multiclass, and 

a regression model. All the three tasks (binary, multiclass and regression) are integrated into a weighted 

consensus prediction. The platform was trained on 14,364 chemicals with hERG data extracted from 

ChEMBL database (Gaulton et al., 2012). 

AD: The reliability of the prediction, based on the AD of the model, is reported in the platform output. 

Specifically, it indicates whether the input molecule falls within the AD, considering a similarity 

threshold of 30%.  

Access: The platform is freely accessible at http://predherg.labmol.com.br/ and no registration is 

required. 

Input: The user can either draw the 2D chemical structure of the query using the drawing tool Ketcher 

(Version 2.10.0; Karulin and Kozhevnikov, 2011) provided in the app or paste the compound's SMILES 

string directly. For batch evaluations, a csv or sdf file, containing the SMILES of multiple compounds, 

can be uploaded. Once the compounds have been drawn or uploaded, the evaluation process begins by 

clicking the button ‘Predict’. When the analysis is complete, the app displays the results. 

Output: PRED-hERG provides i) a classificatory and multiclass prediction of hERG blockage, with an 

associated percentage of confiability score, ii) a regression prediction, with the pIC50 value estimation, 

iii) the reliability assessment of the predictions, based on the AD of the model, iv) a probability map , 

highlighting the contribution of specific chemical fragments to each prediction, and v) a prediction 

based on the consensus of the binary, multiclass and regression models, to better assist the decision-

making process of the user. An example of the platform output is available in Figure 1. The user can 

also launch an eXplainable AI (XAI) analysis, enabling the visualization of SHapley Additive 

exPlanations (SHAP) values (Lundberg and Lee, 2017) to better understand the contribution of 

individual features to binary classification. 

Community and updates: The platform does not include user communication features. It has been 

updated in 2018 (Alves, Braga and Andrade, 2018) and 2024 (Sanches et al., 2024). 

https://link.springer.com/book/9783031980213
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Technical support: The platform includes a ‘GET IN TOUCH' button which allows users to contact the 

research group by completing a form to report any issues they encounter. 

Further information: The platform provides detailed instructions to guide users through the input 

process, ensuring ease of use even for those with limited technical expertise. However, it does not allow 

customizing settings or parameters. Once processing is completed, the system supplies the outcomes in 

a few seconds. The output is presented in a clear and structured manner, with a well-organized interface 

that facilitates interpretation and navigation.  

 
Figure 1. Screenshot of the output reported by the PRED-hERG web platform 

(http://predherg.labmol.com.br/; Braga et al., 2014, 2015) using as input SMILES: 
C1C=CN=C(C2C=CC(C(=O)NCCC(F)CN3CCN(C4C=CC=C(Cl)C=4Cl)CC3)=CC=2)C=1 

 

1.1.2 PRED-SKIN (3.0) 

Developed in 2017 (Alves et al., 2016; Braga et al., 2017) by LabMol at the Faculty of Pharmacy of 

the Federal University of Goiás, Brasil.  

Category: Predictive – classification prediction of toxicological activity. 

Endpoint: The platform performs a binary classification of chemicals based on their skin sensitization 

potential, categorizing compounds as sensitizer/non-sensitizer. 

Background and Significance: Skin sensitization is an immunological response to certain chemicals that 

can manifest as an inflammatory skin reaction, mediated by delayed-type T cells causing allergic contact 

dermatitis (Kimber et al., 2002). 

Technical information: The tool employs five QSAR models built for different skin sensitization assays, 

including the Direct Peptide Reactivity Assay (DPRA, in chemico; OECD, 2024), Local Lymph Node 

Assay (LLNA, in vivo; OECD, 2010), KeratinoSens (Casati et al., 2014), and the human Cell Line 

Activation Test (h-CLAT, in vitro; EU, 2009) and human assays. Additionally, a Bayesian model is 

provided as a consensus classifier integrating predictions from all the other models. 

AD: In the platform output, an indication of whether the compound is inside or outside the AD for each 

prediction model is provided.  

Access: The platform is freely accessible at http://predskin.labmol.com.br/ and no registration is 

required. 

Input: The user has two options for inputting its query molecule, they can either draw its 2D structure 

using the JSME canvas applet (Bienfait and Ertl, 2013) or directly enter a SMILES string into the 

designated text field. Subsequently, the user can click the red ‘Predict Skin Sensitization’ button to 

launch the prediction and obtain the results. 

Output: The results are displayed as a table showing the predicted skin sensitization potential. The 

predictions are based on an in silico integrated approach employing two models with non-animal data, 

https://link.springer.com/book/9783031980213
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namely the Molecular initiating event and the Cellular response. Moreover, two in vivo models are 

being used; specifically, one built on LLNA (Tissue/Organ response), and one built on human data 

(Organism response). The predictions made by these models serve as inputs for the Bayesian model, 

which, ultimately, generates a final ensemble prediction for the skin sensitization response in humans 

(Figure 2). Alongside the predictions and their confiability, the platform assesses the compliance of the 

input molecule with the AD and generates maps highlighting the predicted fragment contributions to 

the overall response.  

Community and updates: User communication features are not included. It has been updated in 2018 

(Alves et al., 2018) and 2021 (Borba et al., 2021). 

Technical support: A ‘GET IN TOUCH’ button which allows the user to contact the research group is 

available.   

Further information: The platform provides step-by-step instructions to guide users through the input 

process. Once processing is complete, the system delivers results within seconds. However, the platform 

does not allow customization of settings or parameters. While the output is presented in a structured 

format within a well-organized interface, the results page is densely packed with text-based information. 

This can reduce intuitiveness and increase the time required to locate and fully comprehend the output 

data. 

 
Figure 2. Screenshot of the output reported by the PRED-SKIN web platform 

(http://predskin.labmol.com.br/; (Alves et al., 2016; Braga et al., 2017) using as input SMILES: 
C1=CC(=CC(=C1C)N+[O-])N+[O-] 

 

 

1.1.3 CYTO-SAFE 

Developed in December of 2024 (Feitosa et al., 2024) by LabMol at the Faculty of Pharmacy of the 

Federal University of Goiás, Brasil.  

Category: Predictive – classification prediction of toxicological activity. 

Endpoint: The platform performs binary classification of chemicals based on their cytotoxic potential, 

categorizing compounds as toxic/non-toxic. 

https://link.springer.com/book/9783031980213
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Background and Significance: Cytotoxicity is the ability of a chemical to cause damage on cellular 

health, often causing cell death (Khalef et al., 2024). Assessing the cytotoxic potential of molecular 

structures can help prioritize low-risk compounds for further validation in the early stages of the drug 

discovery process. 

Technical information: The platform utilizes two QSAR models based on a PubChem dataset of 

approximately 90,000 compounds, evaluated against two cell lines, 3T3 and HEK-293.   

AD: It is considered by the platform and reported in the output specifying a similarity threshold of 10%. 

Access: The platform is freely accessible at http://cytosafe.labmol.com.br/ and no registration is 

required. 

Input: The user can draw the 2D chemical structure of the query using the drawing tool Ketcher (Version 

2.10.0) provided in the app. Alternatively, it is possible to paste the compound's SMILES string directly 

into the drawing tool. For batch evaluations, a csv or sdf file containing the SMILES of multiple 

compounds can be uploaded. Once the compound(s) have been drawn or uploaded, by clicking the 

button ‘Predict’ the evaluation process begins. When the analysis is complete, the platform displays the 

results. 

Output: The output includes a binary toxicity prediction for each cell line (toxic/non-toxic), along with 

a confidence percentage, and the AD assessment for the input molecule. Additionally, users can initiate 

an XAI analysis via a dedicated button, enabling the visualization of molecular diagrams and heatmaps 

and the identification of specific molecular regions that contribute to either ‘cytotoxic’ (red) or ‘non-

cytotoxic’ (green) outcomes (Figure 3). 

Community and updates: The platform does not include user communication features and has not yet 

received updates.  

Technical support: The platform includes a ‘GET IN TOUCH’ button in the top-right section, which 

allows users to complete a form to report any issues they encounter.   

Further information: The platform provides detailed instructions to guide users through the input 

process. Once processing is complete, the system delivers results within seconds. However, the platform 

does not support customization of settings or parameters. The output is presented in a clear and 

structured manner, with a well-organized interface that facilitates interpretation and navigation. 

Publications for more information are not yet available, as the dedicated section currently displays the 

message ‘Will be available soon’. 

https://link.springer.com/book/9783031980213
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Figure 3. General scheme of usage, outcome and XAI of Cyto-Safe web app 

(http://cytosafe.labmol.com.br/). Figure taken from  Feitosa et al., 2024 

(https://creativecommons.org/licenses/by/4.0/). 

  

1.1.4 AMALPHI 

Developed in 2024 (Lomuscio et al., 2024) by our research group as a result of the on-going 

collaboration between the Institute of Crystallography, National Research Council (IC-CNR) and the 

Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari “Aldo Moro”.  

Category: Predictive – classification prediction of toxicological activity. 

Endpoint: The platform performs binary classification of chemicals based on their Phospholipidosis 

(PLD) potential, categorizing compounds as either PLD inducers or non-inducers. 

Background and Significance: PLD is a side effect associated with prolonged exposure to drug-like 

compounds, predominantly Cationic Amphiphilic Drugs (CADs), characterized by the accumulation of 

phospholipids in cells, particularly within lysosomes, of different organs, including liver and kidneys 

(Lüllmann et al., 1975). 

Technical information: The tool relies on a Balanced Random Forest (BRF) algorithm used to build a 

classifier whose training was based on high-quality chemical collection comprising 545 curated small 

molecules extracted from ChEMBL v30. 

AD: A binary output (yes/no) on prediction reliability, based on AD, is included. 

Access: The platform is freely accessible for academic users at 

https://www.ba.ic.cnr.it/softwareic/amalphiportal/ and requires user registration with an email address.  

Input: The user has two options for inputting its query molecule, they can either draw its 2D structure 

using the JSME canvas applet or directly enter a SMILES string into the designated text field. 

Additionally, for virtual screening applications, the user can upload a text file containing a list of 

SMILES strings by selecting the ‘Massive’ button. 

Output: AMALPHI predicts the potential of each compound to act as a PLD inducer. Results are 

displayed as ‘YES’ if the BRF model predicts the compound to induce PLD, and ‘NO’ if it does not.  

The prediction is provided along with a confidence level (Figure 4). The user can download the results 

as a csv file, and a link to download the predictions is also sent to the user’s registered email address. 

https://link.springer.com/book/9783031980213
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Moreover, the platform ‘History’ page keeps a complete record of all user executions, including the 

uploaded input SMILES files and their corresponding outputs, ensuring easy access to past analyses.  

Community and updates: The platform does not include user communication features and has not yet 

received updates. 

Technical support: The platform offers technical support through a section accessible by clicking the 

‘Contact’ button. Here, the user can complete a form to report any issues they encounter.  

Further information: The platform provides the output in a few seconds with a well-organized interface. 

Settings or parameters customization are not provided. 

 
Figure 4. Screenshot of the output page returned by the AMALPHI web platform 

(https://www.ba.ic.cnr.it/softwareic/amalphiportal/). Figure taken from Lomuscio et al., 2024 

(https://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1.1.5 SIGMAP  

Developed in 2024 (Lomuscio et al., 2025) by our research group as a result of the ongoing 

collaboration between the IC-CNR, the Department of Computer Science and the Department of 

Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari “Aldo Moro”.  

Category: Predictive – classification prediction of pharmacological affinity.  

Endpoint: The platform performs binary classification of chemicals based on their affinity potential for 

Sigma-1 Receptor, categorizing compounds as high affinity S1R ligands (yes/no). 

Background and Significance: S1R is involved in the pathological processes of neurodegenerative 

diseases, (Couly, Yasui and Su, 2023) cancer progression (Fallica et al., 2021), and viral infections, 

including COVID-19 (Gordon et al., 2020; Abatematteo et al., 2023). Hence, developing S1R 

modulators is considered a valuable therapeutic approach for addressing these diverse medical 

conditions. 

Technical information: The system uses an ML-based model employing the support vector machine 

algorithm, trained on a curated dataset of high-quality bioactivity data. The dataset consists of 2,967 

chemicals extracted from ChEMBL v33 and experimentally tested as potential S1R modulators.  

https://link.springer.com/book/9783031980213
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AD: The platform includes a binary output (yes/no) for the prediction reliability, based on AD. 

Access: SIGMAP is freely accessible for academic users at https://www.ba.ic.cnr.it/softwareic/sigmap/ 

and requires user registration with an email address. 

Input: The user has two options for inputting its query molecule: they can either draw its 2D structure 

using the JSME canvas applet or directly enter a SMILES string into the designated text field. 

Additionally, the user can upload a txt file containing a list of SMILES strings by selecting the 

‘Massive’ button. 

Output: If the model identifies a molecule as S1R high-affinity binder, the result is shown as ‘YES’. If 

low or no affinity is predicted, it is displayed as ‘NO’. For predictions of high affinity, the system also 

provides a confidence level. When a unique query molecule is entered, SIGMAP offers additional 

insights through SHAP and Contrastive Explanation-based analyses (Jacovi et al., 2021), aiding in the 

interpretation of the results (Figure 5). Through the Contrastive Explanation, SIGMAP can also 

generate 10 structural analogs of the input molecule providing the user with both similar (predicted as 

the input molecule) and dissimilar (counterfactual) examples. Similar examples can strengthen the 

classifier robustness by validating the model stability within the chemical prediction space. 

Additionally, counterfactual examples make the analysis actionable by bringing out small structural 

modifications that would alter the model prediction (Wellawatte et al., 2023). This analysis is achieved 

using a generative model named (Alberga et al., 2024) DeLA-DrugSelf, with which SIGMAP is 

integrated. 

Community and updates: The platform does not include user communication features and has not yet 

received updates. 

Technical support: The platform offers technical support through a section accessible by clicking the 

'Contact' button. Here, the user can complete a form to report any issues they encounter.  

Further information: The platform provides the output within minutes with a structured manner, 

facilitating interpretation. However, the platform does not support customization of settings or 

parameters. 

https://link.springer.com/book/9783031980213
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Figure 5. Screenshot of the output page returned by the SIGMAP web platform 

(https://www.ba.ic.cnr.it/softwareic/sigmap/). Figure taken from Lomuscio et al., 2025 

(https://creativecommons.org/licenses/by/3.0/). 

 

 

1.1.6 ALPACA 

Developed in 2023 (Delre et al., 2023) by our research group as a result of the on-going collaboration 

between IC-CNR and the Department of Pharmacy-Pharmaceutical Sciences, University of the Studies 

of Bari “Aldo Moro”.  

Category: Predictive – classification prediction of pharmacological affinity and selectivity. 

Endpoint: The platform performs binary classification of chemicals based on their potential affinity for 

Cannabinoid Receptor 1 (CB1R) and Cannabinoid Receptor 2 (CB2R) and prediction of their CB2R 

selectivity. 

Background and Significance: CB1R and CB2R are involved in several disorders linked to 

inflammation (Turcotte et al., 2016), such as neurodegenerative diseases, cancer and neuropathic pain. 

CB2R is overexpressed in inflammatory state, suggesting that developing selective CB2R agents may 

be an effective strategy for treating neuroinflammation, while avoiding the psychotropic side effects 

associated with CB1R stimulation in the central nervous system (Komorowska-Müller and Schmöle, 

2020; Tanaka, Sackett and Zhang, 2020).  

Technical information: The tool uses multiple random forest-based models, trained on three different 

curated datasets, comprising 3,514 (for CB2R affinity models), 3,846 (for CB1R affinity models), and 

2,183 (for CB2R/CB1R selectivity model) chemicals extracted from ChEMBL v30. 

https://link.springer.com/book/9783031980213
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AD: The platform evaluates the input molecule and provides a binary output indicating whether it falls 

within or outside the AD. 

Access: ALPACA is freely accessible for academic users at https://www.ba.ic.cnr.it/softwareic/alpaca/ 

and requires user registration with an email address. 

Input: The user has two options for inputting its query molecule: they can either draw its 2D structure 

using the JSME canvas applet or directly enter a SMILES string into the designated text field. 

Additionally, the user can upload a txt file containing a list of SMILES strings by selecting the 

‘Massive’ button. 

Output: The tool predicts the affinity of the query molecule for CB2R and CB1R. For CB2R, affinity 

is evaluated based on pKi thresholds of 6.5 and 7, while for CB1R, the thresholds are set at pKi 5.5 and 

6. If the predicted affinity exceeds the respective threshold, the result is displayed as ‘YES’; otherwise, 

it appears as ‘NO’ (Figure 6). If the query molecule is predicted to bind both CB2R and CB1R above 

their respective thresholds, a tertiary classifier further evaluates CB2R/CB1R selectivity. The user can 

download the results as a csv file, and a link is also sent to the registered email address. Additionally, 

the ‘History’ page maintains a record of all user submissions, including input SMILES and 

corresponding outputs. 

Community and updates: The platform does not include user communication features and has not yet 

received updates. 

Technical support: The platform offers technical support through a section accessible by clicking the 

'Contact' button. Here, the user can complete a form to report any issues they encounter.  

Further information: ALPACA generates the output within seconds and presents it through a well-

structured interface for easy navigation. However, it does not support customization of parameters. 

  

 

Figure 6. Example of the output page returned by the ALPACA web platform 

(https://www.ba.ic.cnr.it/softwareic/alpaca/). Figure taken from Delre et al., 2023  

(https://creativecommons.org/licenses/by/4.0/). 
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1.1.7 PLATO (r35) 

Developed in 2022 (Ciriaco et al., 2022) by the Department of Pharmacy-Pharmaceutical Sciences and 

the Department of Chemistry of University of the Studies of Bari “Aldo Moro”.  

Category: Predictive – classification and regression prediction for target fishing and bioactivity 

profiling.  

Endpoint: The platform performs classification and regression prediction of affinity on 6,297 different 

targets. 

Background and significance: In-silico target fishing can be used to predict potential side-effects of a 

given compound, identify putative drug polypharmacology and facilitate drug repositioning.   

Technical information: PLATO is based on two multi-fingerprint similarity-based predictive 

approaches designed for target fishing (based on classification models) and bioactivity profiling (based 

on regression models; Montaruli et al., 2019; Ciriaco et al., 2021), specifically employing the 

Multifingerprint Similarity Search Algorithm (Mussel) (Alberga et al., 2019). The models use a set of 

634,116 compounds with experimental bioactivity data for 6,297 protein targets, retrieved from 

ChEMBL v35 (Zdrazil et al., 2024). 

AD: This platform does not consider an AD and hence does not provide an AD evaluation. 

Access: The platform is freely accessible for academic users at http://plato.uniba.it/plato/; no 

registration is required. 

Input: The query molecule is entered either as SMILES or by using the JSME sketcher for opening, 

importing or modifying a molecular structure. The user can then choose the output format as well as 

the prediction method, which can be ‘Target fishing’ or ‘Bioactivity profiling’. The ‘Get a response’ 

button is used to launch the prediction. A batch evaluation is not possible.  

Output: A downloadable pdf output is returned. In the first page, the type of prediction (target fishing 

or bioactivity profiling), the query chemical structure and SMILES notation are reported (Figure 7). 

The following pages contain the prediction reports. The report of the quantitative bioactivity profiling 

algorithm contains the target name, the score, on a scale 0-13 of the protein drug target ranking and the 

‘reliable’ column expressing the probability to detect a target with a degree of accuracy according to a 

similarity threshold. The quantitative bioactivity profiling report includes the target name, the predicted 

activity values expressed as IC50, Ki or EC50, and the variance for the best predicted activity type.  

Community and updates: The platform does not include user communication features. However, it 

received multiple updates, aligning with each new release of the ChEMBL database (Davies et al., 

2015; Gaulton et al., 2017; Mendez et al., 2019). 

Technical support: The platform provides users with a mail address for technical support, but no form 

to report potential issues is available.  

Further information: The platform offers a downloadable user guide and generates the output within 2 

to 20 seconds, as stated in a message that appears after the prediction process is submitted.  

Once processing is complete, the output is delivered differently from other platforms. Instead of 

displaying a webpage, the results are provided directly to the user as a pdf or json file. 

https://link.springer.com/book/9783031980213
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Figure 7. Example of the target fishing output page returned by the PLATO web platform 

(http://plato.uniba.it/) including A) the SMILES query and the B) table of the predicted protein targets. 

Figure adapted from Ciriaco et al., 2022 (https://www.mdpi.com/openaccess). 

 

1.1.8 SwissADME 

Developed in 2017 (Daina, Michielin and Zoete, 2017), SwissADME is an example of application 

within SwissDrugDesign, a project whose goal is to create a comprehensive web-based in silico drug 

design environment freely available to researchers worldwide. The platform, providing a diverse set of 

tools that covers all aspects of Computer-Aided Drug Design, has been developed by the Molecular 

Modelling group (MMG) of the Swiss Institute of Bioinformatic (SIB) with the support of the Swiss 

National Science Foundation, for the scientific developments, and of the SIB, for the creation and 

maintenance of its web-based tools.  

SwissDrugDesign includes seven applications for multiple objectives, including the prediction of 

molecular interactions between a target protein and a small molecule, hit identification and lead 

optimization, target fishing and Absorption, Distribution, Metabolism, Excretion (ADME) properties 

prediction.  

Category: Predictive – classification and regression prediction of ADME properties. 

Endpoint: The platform performs classification and regression prediction of physicochemical 

properties, lipophilicity, water solubility, pharmacokinetics, drug-likeness and medicinal chemistry 

friendliness. 

Background and Significance: These properties and parameters influence the ADME of a molecule. 

Assessing ADME properties is crucial in drug development to identify compounds with high biological 

activity and minimal toxicity, increasing their likelihood of successful clinical translation. 
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Technical information: The platform integrates multiple computational methods to provide a 

comprehensive assessment of the pharmacokinetics profile of small molecules. Open-source algorithms 

are at the base of some of these methods, ensuring the freedom for the global scientific community to 

use the results without requiring further permission. Additionally, it offers models specifically 

developed and tested by the MMG of SIB. Whenever possible, the platform provides multiple 

predictions for the same property, making possible a consensus-based evaluation of the results. The 

physicochemical properties, such as molecular weight, molar refractivity and polar surface area, are 

computed through the OpenBabel API (O’Boyle et al., 2011). For lipophilicity prediction, four 

established methods, along with an in-house approach (iLOGP; Daina, Michielin and Zoete, 2014), are 

implemented to calculate the logP. A consensus value is then provided based on the predictions from 

all five methods. Three methods, ESOL model (Delaney, 2004), Ali (Ali et al., 2012) and SILICOS-IT 

(www.silicos-it.be/software.html) are implemented to predict the water solubility. Most of the models 

used for pharmacokinetic prediction are machine-learning binary classifiers based on the support vector 

machine algorithm. Passive Gastro-Intestinal Absorption (HIA) and Blood-Brain Barrier (BBB) 

permeation are assessed using the BOILED-Egg classification model (Daina and Zoete, 2016). 

The drug-likeness prediction is based on six rule-based filters, including the Lipinski rule-of-five 

(Lipinski, 2004) and the Abbot Bioavailability Score (Martin, 2005). 

AD: This platform does not consider an AD and hence does not provide an AD evaluation. 

Access: SwissADME is freely accessible at http://www.swissadme.ch/ and no registration is required. 

Input: The input area features a molecular sketcher powered by ChemAxon’s Marvin JS (Cherinka et 

al., 2019), enabling users to import chemical structures from files or external databases, as well as draw 

and edit 2D structures before adding them to a molecule list. This list, located on the right side of the 

submission page, serves as the actual input for computation. It can be edited as text, enabling the user 

to type or paste SMILES. Each entry in the list corresponds to a single molecule, represented by its 

SMILES notation and, optionally, a name, separated by a space. 

Output: The output panels, one for each molecule submitted, are loaded immediately after calculation 

completion on the same web page (Figure 8). The 2D chemical structure and the corresponding 

canonical SMILES are reported below the title, indicating which molecule the prediction refers to. 

Additionally, a bioavailability radar plot is displayed, offering a quick assessment of drug-likeness 

based on six physicochemical properties: lipophilicity, size, polarity, solubility, flexibility, and 

saturation. Then, the various models and the corresponding data are grouped in different sections of 

output panel (‘Physicochemical Properties’, ‘Lipophilicity’, ‘Pharmacokinetics’, ‘Druglikeness’ and 

‘Medicinal Chemistry'). Additional information and references appear as pop-ups when hovering over 

the red question mark icons next to certain entries or over the bioavailability radar plot. SwissADME 

output data can be exported in two ways. An option is to download a csv file, via the red icon below the 

SMILES list, or to copy the values to the clipboard using the adjacent red icon, allowing pasting into 

any text or spreadsheet application. A graphical output is also available; once all calculations are 

completed, the ‘Show BOILED-Egg’ red button appears below the sketcher, allowing users to visualize 

the results on the same page. The BOILED-Egg model provides an intuitive prediction of passive HIA 

and BBB penetration, based on the molecule’s position in the WLOGP-versus-TPSA referential. The 

white region indicates a high probability of passive absorption in the gastrointestinal tract, while the 

yellow region suggests a high likelihood of brain penetration. Finally, points are blue for predicted 

PGP+ and red for PGP−. 

Community and updates: The platform does not include user communication features. As stated in the 

‘For information’ section, the platform received updates in look and feel while keeping the underlying 

technologies and parameters unchanged. As a result, the updated web tool delivers the same results as 

the previous version. 
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Technical support: The platform offers technical support through a section accessible by clicking the 

'Contact' button. Here, the user can complete a form to report any issues they encounter. 

Further information: The platform provides detailed instructions to guide the user through the input 

process. The guide is available by clicking the ‘Help’ button in the navigation bar. Additionally, clicking 

the ‘Fill with an example’ button provides the user with four sample SMILES, two of which are 

accompanied by the corresponding molecule names, offering an example of how the input should be 

entered. Once processing is completed, the output is provided almost immediately in a clear and 

structured manner, with a well-organized interface that facilitates interpretation. The platform does not 

allow customizing settings or parameters. 

 
Figure 8. Screenshot of the output reported by the SwissADME web platform 

(http://www.swissadme.ch/; Daina, Michielin and Zoete, 2017) using the following string as input: 
CC(C)CC1=CC=C(C=C1)C(C)C(=O)O Ibuprofen 

 

 

1.1.9 DELA-DRUGSELF 

Developed in 2024 (Alberga et al., 2024) by our research group as a result of the on-going collaboration 

between the IC-CNR, the Department of Pharmacy-Pharmaceutical Sciences of University of the 

Studies of Bari “Aldo Moro” and the Institute of Biomolecular Chemistry of CNR of Pozzuoli.  

Category: Generative. 

Endpoint: The platform performs automatic generation of drug-like analogues. 

Background and Significance: The automatic generation of analogues supports medicinal chemists in 

designing derivatives of molecules already available in their laboratories, making them strong 

candidates for easy and cost-effective synthesis. The resulting libraries serve as valuable starting points 

for virtual screening procedures.   

Technical information: The model consists of an R-NN composed of two layers of Long Short-Term 

Memory (LSTM) units. LSTM architecture is exploited in two generative approaches, namely Sampling 

from Scratch and Sampling with Mutations.  

The Training Set of DeLA-DrugSelf was prepared starting from the entire ChEMBL v28 database and 

consists of 1,092,285 compounds. 
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While preserving the overall architecture of its predecessor, DeLA-Drug (Creanza et al., 2022), an R-

NN model with two layers of LSTM cells, DeLA-DrugSelf introduces significant advancements. The 

most notable improvement is the adoption of SELF-referencing Embedded Strings (SELFIES) as a 

molecular representation. Furthermore, it expands generation capabilities by allowing not only token 

substitutions but also insertions and deletions, thereby enhancing molecular diversity and design 

flexibility. 

AD: Generative models are neither definable nor usable, as opposed to predictive models. 

Access: The platform is freely available at https://www.ba.ic.cnr.it/softwareic/delaself/ and requires 

user registration with an email address.  

Input: The user has two options for inputting its query molecule: they can either draw its 2D structure 

using the JSME canvas applet or directly enter a SMILES string into the designated text field. 

Additionally, JSME enables the direct import of mol or sdf files into the system. The user can customize 

the tool based on their preferences by adjusting parameters such as the number of desired compounds 

(ranging from 10 to 100, with a default of 10) and the number of mutations (ranging from 1 to 5, with 

a default of 1).  Notably, when a query molecule is inserted, the web portal calculates its Quantitative 

Estimate of Drug-likeness (QED) score. If this score falls below a predefined threshold (<0.35), a 

warning is displayed, allowing the user to decide whether to proceed with analogues generation. Once 

the process is complete, the outcomes are displayed. 

Output: The platform provides an interactive list of SELFIES, converted into SMILES format for 

simplicity, where the Synthetic Accessibility (SA) values do not exceed a one-unit difference compared 

to the query molecule (Figure 9). The user can navigate this list in various ways. The generated 

compounds are ranked based on their QED score, SA value, and Tanimoto similarity to the query, 

allowing for an intuitive and structured exploration. Additionally, the user has the option to download 

the ranked list in SMILES (txt or smi format) or sdf files, making it easy to analyze the results offline.   

For a more detailed inspection, the 2D structures of the generated compounds are readily accessible 

within the JSME editor by simply clicking on the corresponding SMILES string. Moreover, if 

requested, the platform can predict whether the generated compounds may interact with specific 

cytochrome P450 isoforms, including CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, 

CYP2D6, CYP2E1, and CYP3A4. These predictions are performed using the software CypReact (Tian 

et al., 2018), providing valuable insights into potential metabolic interactions.  

Once the process is complete, the system sends download links for the generated data to the user's 

registered email. Additionally, a ‘History’ page keeps track of all user executions, recording details 

such as the input SMILES and the corresponding generated output, ensuring easy access to past results. 

Community and updates: The platform does not include user communication features and has not yet 

received updates.  

Technical support: The platform offers technical support through a section accessible by clicking the 

‘Contact’ button. Here, the user can complete a form to report any issues they encounter.   

Further information: The platform provides the output in a few seconds with a well-organized interface. 

Additionally, it allows customizing some parameters such as ‘The maximum number of generated 

compounds’ and ‘Number of mutations’. 
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Figure 9. Example of the output page returned by the DeLA-DrugSelf web platform 

(https://www.ba.ic.cnr.it/softwareic/delaself/). Figure taken from Alberga et al., 2024 

(https://creativecommons.org/licenses/by/4.0/). 

 

1.1.10 Deep-PK 

Developed in 2024 (Myung, de Sá and Ascher, 2024) by Biosig Lab, located at St Lucia Campus in 

Brisbane. 

Category: Predictive - classification and regression prediction of ADMET properties - and generative. 

Endpoint: The platform performs classification and regression prediction of 73 endpoints - including 

64 ADMET and 9 general physicochemical properties - and generation of drug-like analogues.  

Background and Significance: Evaluating ADMET and general physicochemical properties is essential 

for identifying compounds with high biological activity and low toxicity. Examining these properties 

supports molecular optimization ensuring favorable pharmacokinetic and safety profiles. Moreover, the 

automated generation of analogues helps medicinal chemists by facilitating the design of new 

derivatives based on already available molecules.  

Technical information: The platform incorporates multiple DL models based on Graph Neural 

Networks, specifically using D-MPNN of Chemprop  (Yang et al., 2019), including 49 models designed 

for binary classification and 24 for regression tasks. Chemprop (Heid et al., 2024) was also utilized to 

identify key molecular substructures influencing predictions, offering insights into which molecular 

sites should be retained, modified, or removed.   

For the optimization process in Deep-PK, the MultI-constraint MOlecule Sampling (MIMOSA) method 

(Fu et al., 2021) was implemented, enabling the generation of up to 100 molecular variants from a given 

query structure by adding, replacing, or removing substructures. Moreover, a pre-trained model was 
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employed to optimize the QED, ensuring the refinement of generated compounds based on drug-

likeness criteria. 

AD: Deep-PK includes binary indicators for regression tasks, specifying whether the input molecule 

falls or not within the AD.  

Access: The platform is freely accessible at https://biosig.lab.uq.edu.au/deeppk/ and no registration is 

required.  

Input: Deep-PK supports different types of input. The user can provide a single molecule as a SMILES 

string or upload a file containing multiple compounds. Specifically, the platform accepts SMILES files 

and sdf files, each capable of containing up to 2,000 molecular structures. Additionally, the user can 

input a molecule by drawing its structure using the JSME canvas applet, from which the corresponding 

SMILES representation is automatically generated. 

Output: The platform shows four key prediction outputs, each presented on a dedicated page (Figure 

10). First, the ‘Predictions’ page displays the predicted pharmacokinetic, toxicity, and general molecular 

properties when all selected models have completed their analyses. Second, the ‘Focus’ page provides 

a detailed overview of the molecule, including its structure, SMILES representation, and predicted 

properties. Third, the ‘Analysis’ page allows for a deeper exploration of the molecules whose ADMET 

properties were predicted. The user can examine general properties, drug-likeness scores, and the 

importance of specific molecular substructures in the predictions. Additionally, this page features radar 

plots that visually represent different aspects of drug-likeness. Lastly, the ‘Optimization’ page is 

dedicated to refining the given query molecule to improve its pharmacokinetic and toxicity properties.  

The user can download the results from both the ‘Prediction’ and ‘Optimization’ pages as csv files, 

while the data from the ‘Analysis’ page is provided in a zip file. 

Community and updates: The platform lacks user communication features and has not yet been updated. 

Technical support: The platform offers technical support through a dedicated section accessible by 

clicking the ‘Contact’ button and selecting ‘Deep-PK’ in the ‘Subject’ field. The user can then write a 

message and send it by clicking the ‘Send’ button. 

Further information: The platform provides detailed instructions available by clicking the ‘Help’ button 

in the navigation bar. The ‘Theory’ button offers detailed insights into all target predictions, including 

their description, interpretation, and assay type. The user can also download this information as a pdf 

file for offline reference.  Deep-PK requires up to 15 minutes to predict all 73 properties of a single 

molecule. Optimizing a molecule, generating and predicting 100 analogues requires approximately 20 

minutes. Once processing is completed, the output is provided with a well-organized interface. 

Figure 10. Screenshot of the ‘Predictions’ output page reported by the Deep-PK web platform 

(https://biosig.lab.uq.edu.au/deeppk/; Myung, de Sá and Ascher, 2024) using as string SMILES: 

CC1(C2C1C(N(C2)C(=O)C(C(C)(C)C)NC(=O)C(F)(F)F)C(=O)NC(CC3CCNC3=O)C#N)C 

https://link.springer.com/book/9783031980213
https://biosig.lab.uq.edu.au/deeppk/
https://biosig.lab.uq.edu.au/deeppk/


Preprint submitted to Springer Nature  Version PRIOR to peer-review 

 

Accepted — To appear in: Lavecchia A (Ed.), “Applied Artificial Intelligence for Drug Discovery: From Data-

Driven Insights to Therapeutic Innovation” https://link.springer.com/book/9783031980213 

 

 

19 

 

A comprehensive overview of all the web platforms presented is provided in Table 1.  

 

Table 1. Comparative overview of the platforms discussed in this chapter. Each entry is characterized 

by category (Predictive and/or Generative), endpoint and relative reference. 

Name Category Endpoint References 

PRED-hERG (5.0) Predictive hERG-related cardiotoxicity   

Braga et al., 2015 

Alves, Braga and 

Andrade, 2018 

PRED-SKIN (3.0) 
Predictive 

 
Skin sensitization potential 

Braga et al., 2017 

Borba et al., 2021 

CYTO-SAFE Predictive Cytotoxic potential Feitosa et al., 2024 

AMALPHI Predictive Phospholipidosis potential Lomuscio et al., 2024 

SIGMAP Predictive 
Affinity potential for Sigma-1 

Receptor 
Lomuscio et al., 2025 

ALPACA Predictive 
Affinity potential for 

Cannabinoid receptors  
Delre et al., 2023 

PLATO (r35) Predictive Target fishing   Ciriaco et al., 2022 

SwissADME Predictive  ADME properties 
Daina, Michielin and 

Zoete, 2017 

DeLA-DrugSelf Generative Drug-like analogues generation Alberga et al., 2024 

Deep-PK 

Predictive and 

generative 

 

ADMET properties / drug-like 

analogues generation  

Myung, de Sá and 

Ascher, 2024 

 

1.2 Human-Centered Design Strategies 

AI-based web platforms have the potential to reshape the drug discovery process. These tools, 

however, are predominantly developed by researchers with a medicinal chemistry background, 

particularly in cheminformatics. We do believe that for a true advancement in the field, a closer 

collaboration between medicinal chemists and computer scientists specializing in HCI is highly 

desirable. Specifically, the HCD is the iterative design approach that places human needs, preferences, 

and behaviors at the core of the design and development process and focuses on understanding users’ 

contexts, goals, and expectations by actively involving them throughout the design cycle (ISO, 2019) 

(Figure 11). Employing HCD increases the overall quality of software systems (Ardito et al., 2014) and, 

in particular, of their usability, which is defined in the ISO standard 9241:11 as “the extent to which a 

system, product, or service can be used by specified users to achieve specified goals with effectiveness, 

efficiency, and satisfaction in a specified context of use” (ISO, 2018). HCD ensures that AI platforms 

are functional, useful, usable, and aligned with their values and constraints, prioritizing the needs and 

goals of users (Desolda et al., 2024). 
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Figure 11. The HCD model, as defined in the International Organization for Standardization 

(ISO, 2019). 

 

Building on the core principles of HCI, recent scientific literature introduces Human-Centered Artificial 

Intelligence (HCAI), as a specialization of HCI, to guide the creation of AI systems (Shneiderman, 

2022). HCAI systems are designed, developed, and evaluated involving users in the process; in this 

way, it is possible to improve the performance of the platforms and to increase the satisfaction of the 

users (Desolda et al., 2024). 

1.3 Designing Usable AI-Based Tools for Drug Discovery 

Designing HCAI systems is a multidisciplinary effort. Besides the two pillars of HCI and AI, 

other disciplines converge to provide techniques and methodologies. Particularly, ML, XAI, Software 

Engineering, and Ethics also contribute to HCAI (Desolda et al., 2024). The same principles can be 

applied when designing usable HCAI systems for drug discovery. More specifically, in the context of 

HCAI, the HCD approach is fundamental when an interaction between users and system is expected. 

As such, two main phases are required to create HCAI systems: the actual design phase and the 

evaluation of the designed solution. This process for the HCAI systems requires methodologies that 

prioritize usability as the main principle, while ensuring ethical alignment, adaptability (i.e.; the ability 

of a system to be customized by the user (Fischer, 2023)), and adaptivity (i.e.; the ability of a system to 

automatically change its behavior in response to usage patterns (Fischer, 2023)). For simplicity, 

throughout the rest of this section, we will provide an overview of useful techniques to design and 

evaluate usable AI-based systems. If the reader is interested in exploring how researchers deal with 

ethical issues, transparency of the decision-making process, and other AI-related issues, we suggest 

reading the following books and reviews (Nam, Jung and Lee, 2022; Shneiderman, 2022; Desolda et 

al., 2024).  

The absence of a strong focus on usability may limit the adoption of even the most advanced 

AI systems, as users may struggle to use them effectively, efficiently, and with satisfaction. As 

previously proved by studies surveying users, a well-designed, usable interface can mitigate ambiguity, 

thereby reducing the risk of misinterpretation (Esposito, Desolda and Lanzilotti, 2024). HCD strategies, 

often overlooked by developers of AI-based platforms, play a crucial role in ensuring that these 
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cheminformatics platforms are truly effective. The development of an HCAI system is inherently an 

iterative process, where design and evaluation phases alternate in a continuous cycle. However, this 

process can be applied to existing systems, which require improving and refining the product via a re-

design phase, as well. This way, evaluation strategies that identify potential issues and guide future 

updates can be implemented. The following sections will focus on useful techniques (heavily adopted 

in HCI) to design and evaluate usable software products. We will especially focus on techniques and 

strategies that are considered useful for AI-based systems and may guide the further development of 

tools for drug discovery. 

1.3.1 Designing for Usability 

As mentioned above (cf. Human-Centered Design Strategies) one of the cornerstones of HCD 

is the iterative design process, which enables designers to incorporate users’ feedback. However, it is 

recommended to involve users prior to the final stages of development. Early engagement of users in 

the design phase fosters solutions that better align with their needs and expertise. Certain well-

established techniques have been specifically developed for this purpose in the HCI community. These 

techniques are reported below. 

Rapid prototyping is extremely useful for obtaining quick user feedback. It consists in the creation of 

prototypes, i.e., simplified drawings which represent the interface of a system (Rogers, Sharp and 

Preece, 2023). This method allows designers to freely explore ideas without allocating excessive time 

and resources to them, thereby facilitating the adoption of users’ feedback thanks to the low costs of 

edits. 

Participatory Design is an approach that actively involves users in the design process ensuring that 

their perspectives and expertise shape the system’s development (Rogers, Sharp and Preece, 2023). 

Leveraging rapid prototyping, designers can quickly explore ideas and get feedback from users, which 

in turn can support the designers by sharing their needs and requirements. This approach enables the 

rapid exploration of potentially innovative solutions while ensuring alignment with users’ real-world 

experiences. 

Value-Sensitive Design is an approach to design that recognizes the importance of the social, cultural, 

and moral environments in which software operates (Friedman and Hendry, 2019). It incorporates 

ethical considerations and human values into design choices. Value-sensitive design is especially useful 

for AI-based systems, especially for highly regulated fields, such as drug discovery. It is important to 

note that the values are elicited by discussing them with the end-users, and it is not possible to pre-

define target values as ‘universal truths’ during the design phase. 

In the context of AI-based systems for drug discovery, end-users often have a different 

background compared to those who designed and developed such tools (e.g., experimental vs. 

computational medicinal chemists). This gap must therefore be considered since the developers' 

understanding of the end-users' needs may not be sufficient to create usable software. It is, therefore, 

imperative that design solutions are systematically evaluated to ensure their usability. 

1.3.2 Evaluating Usability of AI-Based Systems 

Evaluating the usability of a system involves various approaches. Two main classes of 

evaluation techniques can be adopted: i) inspections exclusively by usability experts and ii) usability 

studies involving end-users (Rogers, Sharp and Preece, 2023). It is important to note that neither 

technique should be preferred over the other, since they reveal a complementary set of errors, 

particularly when inspections emphasize higher-level issues that may limit the users’ interaction with 

the system (Nielsen, 2010). 
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i) Inspections do not require the presence of the system’s end-user during the evaluation process 

since it is performed. The experts detect usability issues and verify the compliance system with 

standards. One of the most well-known methods to perform inspections is Heuristic Evaluation 

in which researchers are guided by a set of usability principles, called heuristics, to evaluate 

their adherence of User-Interface (UI) elements to them (Rogers, Sharp and Preece, 2023). A 

commonly used set of heuristics are the so-called Nielsen’s heuristics (Nielsen, 1994). 

ii) Usability Studies require user participation. They may be conducted in controlled 

environments (i.e. usability laboratories). However, the currently used techniques prefer 

informal settings, where the users are directly observed while interacting with the system. This 

technique provides information on task efficiency, error rates, and user satisfaction. 

Furthermore, implementing the thinking aloud protocol, it also provides insights into the users’ 

mental model of their tasks (Rogers, Sharp and Preece, 2023). 

1.4 How to Improve Usability of AI-Based Tools for Drug 

Discovery: An Example 

This section focuses on how the inspection technique can support the evaluation phase of HCD. 

The ten heuristics developed by Jakob Nielsen are one of the core instruments to inspect and assess 

systems without involving real end-users (Nielsen, 1994). The heuristics are presented and described 

below: 

1. Visibility of system status: the design should consistently inform users about system status by 

providing timely and appropriate feedback. 

2. Match between system and the real world: the design should use the users’ language, 

incorporating familiar words, phrases, and concepts instead of internal jargon. It should adhere 

to real-world conventions, presenting information in a natural and logical order. 

3. User control and freedom: users are prone to errors and should have clearly marked 

“emergency exits” that allow them to undo unwanted actions quickly and effortlessly. 

4. Consistency and standards: users should not be left uncertain about whether different words, 

situations, or actions have the same meaning. 

5. Error prevention: the design should either eliminate error-prone conditions or detect them and 

provide users with a confirmation option before they proceed. 

6. Recognition rather than recall: reduce the user’s cognitive load by making elements, actions, 

and options visible. Users should not need to recall information from one part of the interface 

to another, but it should be available when necessary. 

7. Flexibility and efficiency of use: shortcuts can enhance efficiency for expert users, allowing 

the design to accommodate both novice and experienced users, possibly remaining hidden for 

beginners. 

8. Aesthetic and minimalist design: a system’s interface should present only relevant 

information, avoiding unnecessary or extraneous content. Irrelevant elements can create 

confusion and hinder usability; thus, they must not be highlighted. 

9. Help users recognize, diagnose, and recover from errors: error messages should be written 

in clear, simple language, enabling the user to identify the issue and offering constructive 

solutions. 

10. Help and documentation: although it is ideal for the system to be intuitive enough to require 

no additional explanation, documentation should be available to assist users in completing their 

tasks. 
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These ten heuristics were used to propose new design solutions for an AI-based platform for 

drug discovery described and illustrated in the following. 

1.4.1 Towards a More Usable AI-Based Platform for Drug Discovery 

In this section, we provide a simple example of how HCI methods may improve a platform 

without requiring extensive resources. We considered SIGMAP as an example of AI-based platform 

for drug discovery. We inspected the platform based on Nielsen’s heuristics, (cf. How to Improve 

Usability of AI-Based Tools for Drug Discovery: An Example) and herein propose possible solutions 

to the weaknesses that could negatively impact its usability. This step represents a preliminary phase 

aimed to identify major issues that need to be solved before we conduct a user study. 

One of the main activities of SIGMAP is to predict the affinity of potential drug candidates for S1R. 

 The section in which this output is shown is currently labeled with the SMILES corresponding 

to the input molecule. To ensure that the platform aligns better with the Match between the system and 

the real-world heuristic, it can be renamed ‘Affinity Prediction’ instead.  

Another modification that could further enhance the platform’s compliance with this heuristic is making 

it available in multiple languages. Although this rule is generally applied to the optimization of systems, 

scientific platforms, such as SIGMAP, are often available exclusively in English. Indeed, the scientific 

community adopts English as lingua franca. Since language limitations could still hinder usability and 

adoption, providing multilingual support would make the platform more inclusive and allow a broader 

range of users to interact with it more intuitively. 

To foster User Control and Freedom, ‘Cancel Prediction’ buttons can be added to the loading 

page. This would ensure that users are enabled to revert their actions if needed. Currently, when an 

input is being processed, the UI remains active, possibly causing its involuntary interruption. To 

minimize errors the interface should be kept noninteractive during this time, as suggested by Error 

Prevention.  

Another change that can positively impact SIGMAP’s usability consists of revising the structure 

of the navigation bars and footers. The navigation bar should be modified to ensure its fixed position at 

the top of each page allowing users to always access the basic functions of the systems, avoiding 

confusion and frustration. Additionally, the footer uselessly takes up excessive space on the UI and 

should therefore be redesigned to better align with the heuristic Aesthetic and Minimalist Design. 

Finally, the visibility and clarity of the loading process bar should be improved to comply with the 

Visibility of system status heuristic. At the moment a throbber is shown while the system is loading, but 

no information on the status of the system is provided (i.e., percentage of completion). Similar changes 

should be implemented for other visual clues to ensure that users can distinguish them from the rest of 

the UI, such as enhancing contrast with their visual context. 

The changes presented in this section –resulting from an evaluation which is in no way 

exhaustive– aim to solve issues that can generate negative feelings in users that impact the interaction 

process and the accomplishment of the task. To address these issues, we recommend adding new 

elements to the UI or modifying the structure of those that can be improved.  Indeed, such high-level 

issues might interfere with users’ feedback during a subsequent user study of the platform, hindering 

the recognition of deeper obstacles in the interaction (Nielsen, 2010). Therefore, the heuristic rules 

considered in our preliminary analysis elucidate flaws and weaknesses of SIGMAP that negatively 

impact the usability of the platform, highlighting the areas in which it can be improved prior to a user 

study. 
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1.5 Conclusions: Towards a Symbiosis Between Humans and AI 

Platforms for Drug Discovery 

In this chapter, we analyzed in detail a selection of AI-driven web-based platforms developed 

to support medicinal chemists working on early stages of the drug discovery process. These platforms 

are often created by cheminformatics experts, whose background does not necessarily match the one of 

the end-users, such as experimental medicinal chemists. Additionally, platform design and development 

are seldom assisted by the intervention of computer scientists specialized in HCD. We propose that a 

multidisciplinary collaboration between experts in the creation of systems ensures that the end-users 

are placed at the core of the process resulting in usable platforms. 

The selected web applications herein reported represent a subset of open-source models which 

are ideated to accelerate the drug discovery pipeline. We overviewed the platforms describing key 

aspects of their interface and their functional interaction (Input, Output, Technical support). Then, we 

identified strengths and weaknesses of the platforms from a cheminformatic point of view. However, a 

systematic improvement of UI requires computer scientists’ expertise, implementing heuristic 

principles, as well as supervised user studies. This synergy can promote a productive ‘partnership’ 

where human expertise and intuition complement the efficiency and scalability of AI (Desolda et al., 

2024). By considering the end-users' feedback, AI platforms can be adapted and refined. This reciprocal 

relationship defines the concept of human-AI symbiosis (Grigsby, 2018), a vision where humans and 

AI systems work together combining the strengths and compensating for limitations in tackling complex 

challenges of modern drug discovery. 
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